Nonlinear dissipation effect in Brownian relaxation
نویسندگان
چکیده
منابع مشابه
Nonlinear dissipation effect in Brownian relaxation.
In an ensemble of noninteracting Brownian particles, a finite systematic average velocity may temporarily develop, even if it is zero initially. The effect originates from a small nonlinear correction to the dissipative force, causing the equation for the first moment of velocity to couple to moments of higher order. The effect may be relevant when a complex system dissociates in a viscous medi...
متن کاملNonlinear Debye-Onsager-Relaxation-Effect
The quantum kinetic equation for charged particles in strong electric fields is used to derive the nonlinear particle flux. The relaxation field is calculated quantum mechanically up to any order in the applied field provided a given Maxwellian plasma. The classical limit is given in analytical form. In the range of weak fields the deformation of the screening cloud is responsible for the Debye...
متن کاملQUANTUM TUNNELING IN MEDIUMS WITH LINEAR AND NONLINEAR DISSIPATION
We have applied the method of integration of the Heisenberg equation of motion proposed by Bender and Dunne, and M. Kamella and M. Razavy to the potential V(q) = v q - µ q with linear and nonlinear dissipation. We concentrate our calculations on the evolution of basis set of Weyl Ordered Operators and calculate the mean position , velocity , the commutation relation [q, p], and the energ...
متن کاملNonequilibrium fluctuation-dissipation theorem of Brownian dynamics.
Studying the Brownian motion of a system driven by an external control from one macroscopic state to another macroscopic state, this paper presents the derivation of a nonlinear fluctuation-dissipation theorem (FDT). The new FDT relates the nonequilibrium work to the equilibrium free-energy difference in a very simple manner. It is valid wherever the Brownian dynamics is applicable. It recovers...
متن کاملQuantal Brownian Motion - Dephasing and Dissipation
We analyze quantal Brownian motion in d dimensions using the unified model for diffusion localization and dissipation, and Feynman-Vernon formalism. At high temperatures the propagator possess a Markovian property and we can write down an equivalent Master equation. Unlike the case of the Zwanzig-Caldeira-Leggett model, genuine quantum mechanical effects manifest themselves due to the disordere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2007
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.76.031121